Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let n( > 1) be a positive integer. Then largest integer m such that (nm+1) divides 1+n+n2+ ldots+n255 is
Q. Let
n
(
>
1
)
be a positive integer. Then largest integer
m
such that
(
n
m
+
1
)
divides
1
+
n
+
n
2
+
…
+
n
255
is
1755
191
Binomial Theorem
Report Error
A
128
B
63
C
64
D
32
Solution:
We have,
S
=
1
+
n
+
n
2
+
…
+
n
255
⇒
S
=
n
−
1
1
(
n
256
−
1
)
=
(
n
128
+
1
)
n
−
1
n
128
−
1
∴
S
=
(
n
128
+
1
)
(
1
+
n
+
n
2
+
…
+
n
127
)
Thus, the largest value of
m
for which
1
+
n
+
n
2
+
…
+
n
255
is divisible by
n
m
+
1
is
128
.