Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let m, n ∈ N and gcd (2, n) =1 If 30 beginpmatrix30 0 endpmatrix+29 beginpmatrix30 1 endpmatrix+ ldots+2 beginpmatrix30 28 endpmatrix+1 beginpmatrix30 29 endpmatrix=n.2m, then n + m is equal to (Here beginpmatrixn k endpmatrix= nCk)
Q. Let
m
,
n
∈
N
and
g
c
d
(
2
,
n
)
=
1
If
30
(
30
0
)
+
29
(
30
1
)
+
…
+
2
(
30
28
)
+
1
(
30
29
)
=
n
.
2
m
, then n + m is equal to (Here
(
n
k
)
=
n
C
k
)
1738
183
JEE Main
JEE Main 2021
Probability - Part 2
Report Error
Answer:
45
Solution:
30
(
30
C
0
)
+
29
(
30
C
1
)
+
…
+
2
(
30
C
28
)
+
1
(
30
C
29
)
=
30
(
30
C
30
)
+
29
(
30
C
29
)
+
……
+
2
(
30
C
2
)
+
1
(
30
C
1
)
=
r
=
1
∑
30
r
(
30
C
r
)
=
r
=
1
∑
30
r
(
r
30
)
(
29
C
r
−
1
)
=
30
r
=
1
∑
30
29
C
r
−
1
=
30
(
29
C
0
+
29
C
1
+
29
C
2
+
…
+
29
C
29
)
=
30
(
2
29
)
=
15
(
2
)
30
=
n
(
2
)
m
∴
n
=
15
,
m
=
30
n
+
m
=
45