Q.
Let m be the smallest positive integer such that the coefficient of x2 in the expansion of (1+x)2+(1+x)3+….+(1+x)49+(1+mx)50 is (3n+1)51C3 for some positive integer n. Then the value of n is
(1+x)2+(1+x)3+…+(1+x)49+(1+mx)50 =(1+x)−1(1+x)2[(1+x)48−1]+(1+mx)50 =x(1+x)50−x(1+x)2+(1+mx)50
given that coefficient of x2=(3n+1)51C3 ∴50C3+50C2m2=(3n+1)51C3
after simplifying ⇒50C250C3+m2=(3n+1)50C251C3 ⇒350−2+m2=(3n+1)351 ⇒16+m2=17(3n+1) ⇒m2=51n+1 m is the smallest +ve integer ∴n=5