Using the sum property we get r=0∑mΔr =∣∣r=0∑m(2r−1)m2−1sin2(m2)r=0∑mCr2msin2(m)r=0∑m1m+1sin2(m+1)∣∣
But r=0∑m(2r−1)=21(m+1)(2m−1−1)=m2−1, r=0∑mmCr=2m and r=0∑m1=m+1
Therefore, r=0∑mΔr=∣∣m2−1m2−1sin2(m2)2m2msin2(m)m+1m+1sin2(m+1)∣∣=0