Q.
Let M and N be the number of points on the curve y5−9xy+2x=0, where the tangents to the curve are parallel to x-axis and y-axis, respectively. Then the value of M+N equals _____
y5−9xy+2x=0 5y4xdy−9xdxdy−9y+2=0 dxdy(5y4−9x)=9y−2 dxdy=5y4−9x9y−2=0 (for horizontal tangent) y=92⇒ Which does not satisfy the original equation ⇒M=0
Now 5y4−9x=0 (for vertical tangent) 5y4(9y−2)−9y5=0 y4[45y−10−9y]=0 y=0(Or)36y=10 y=185 y=0⇒x=0&y=185⇒x= (0,0)(x,185) N=2 M+N=0+2=2