Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let m and M be respectively the minimum and maximum values of |&cos2x&1+sin2x&sin 2x &1+cos2x&sin2x&sin 2x &cos2x&sin2x&1+sin 2x|. Then the ordered pair ( m , M ) is equal to
Q. Let
m
and
M
be respectively the minimum and maximum values of
∣
∣
co
s
2
x
1
+
co
s
2
x
co
s
2
x
1
+
s
i
n
2
x
s
i
n
2
x
s
i
n
2
x
s
in
2
x
s
in
2
x
1
+
s
in
2
x
∣
∣
. Then the ordered pair
(
m
,
M
)
is equal to
6152
235
JEE Main
JEE Main 2020
Application of Derivatives
Report Error
A
(-3,-1)
53%
B
(-4,-1)
18%
C
(1,3)
16%
D
(-3,3)
13%
Solution:
∣
∣
co
s
2
x
1
+
co
s
2
x
co
s
2
x
1
+
s
i
n
2
x
s
i
n
2
x
s
i
n
2
x
s
in
2
x
s
in
2
x
1
+
s
in
2
x
∣
∣
R
1
→
R
1
−
R
2
,
R
2
→
R
2
−
R
3
∣
∣
−
1
1
co
s
2
x
1
0
s
i
n
2
x
0
−
1
1
+
s
in
2
x
∣
∣
=
−
1
(
sin
2
x
)
−
1
(
1
+
sin
2
x
+
cos
2
x
)
=
−
sin
2
x
−
2
m
=
−
3
,
M
=
−
1