∣adjM∣=∣M∣2=∣∣−18−51−63−12−1∣∣=−1(6−6)−1(−8+10)−1(24−30) ∣M∣2=−2+6=4⇒∣M∣=±2
We know
A.(adj A) = |A| I
So M=∣M∣(adjM)−1 ...(1)
So (adjM−1)=⎣⎡02−1−12−1−12−32−32−12−1⎦⎤T=⎣⎡02−12−32−1−12−1−12−32−1⎦⎤
Now from equation (1) ⎣⎡01312ba31⎦⎤=∣M∣⎣⎡02−12−32−1−12−1−12−3−21⎦⎤
By comparison, ∣M∣=−2
So a=∣M∣(−1)=−2(−1)=2
and b=∣M∣×2−1=1
(A) a+b=2+1=3
(B) (adjM)−1+adjM−1∵adjA−1=(adjA)−1 =2adj(M−1)∵A.adjA=∣A∣In =2(2−M)adjA=A−1∣A∣ =−M So adj(M−1)=(M−1)−1∣M−1∣ adj(M−1)=M∣M∣−1 adj(M−1)=∣M∣M=2−M (C)∵M=⎣⎡013121231⎦⎤
So, ⎣⎡013121231⎦⎤⎣⎡αβγ⎦⎤=⎣⎡123⎦⎤
So, β+2γ=1..(2) α+2β+3γ=2...(3) 3α+β+γ=3...(4)
From (2), (3) and (4), we get α=1,β=−1,γ=1
So value of α−β+γ=1−(−1)+1=3 (D)∣adj(M2)∣=∣M2∣2=∣M∣4=∣−2∣4=16