Q.
Let λ=0 be a real number. Let α,β be the roots of the equation 14x2−31x+3λ=0 and α,γ be the roots of the equation 35x2−53x+4λ=0. Then β3α and γ4α are the roots of the equation
14x2−31x+3λ=0 α+β=1431…..(1)
and αβ=143λ….(2) 35x2−53x+4λ=0 α+γ=3553….(3)
and αγ=354λ….(4) (4)(2)⇒γβ=4×143×35=815⇒β=815γ (1)−(3)⇒β−γ=1431−3553=70155−106=107 815γ−γ=107⇒γ=54 ⇒β=815×54=23 ⇒α=1431−β=1431−23=75 ⇒λ=314αβ=314×75×23=5
so, sum of roots β3α+γ4α=(βγ3αγ+4αβ) =βγ(3×354λ+4×143λ)=14×35βγ12λ(14+35) =490×23×5449×12×5=5
Product of roots =β3α×γ4α=βγ12α2=23×5412×4925=49250
So, required equation is x2−5x+49250=0 ⇒49x2−245x+250=0