Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let λ ∈ R , veca=λ hati+2 hatj-3 hatk, vecb= hati-λ hatj+2 hatk. If (( veca+ vecb) ×( veca × vecb)) ×( veca- vecb)=8 hati-40 hatj-24 hatk, then |λ( veca+ vecb) ×( veca- vecb)|2 is equal to
Q. Let
λ
∈
R
,
a
=
λ
i
^
+
2
j
^
−
3
k
^
,
b
=
i
^
−
λ
j
^
+
2
k
^
. If
((
a
+
b
)
×
(
a
×
b
))
×
(
a
−
b
)
=
8
i
^
−
40
j
^
−
24
k
^
, then
∣
λ
(
a
+
b
)
×
(
a
−
b
)
∣
2
is equal to
251
148
JEE Main
JEE Main 2023
Vector Algebra
Report Error
A
136
B
132
C
140
D
144
Solution:
a
=
λ
i
^
+
2
j
^
−
3
k
^
b
=
i
^
−
λ
j
^
+
2
k
^
⇒
(
b
−
a
)
×
((
a
+
b
)
×
(
a
×
b
))
=
8
i
^
−
40
j
^
−
24
k
^
⇒
((
a
−
b
)
⋅
(
a
+
b
))
(
a
×
b
)
=
8
i
^
−
40
j
−
24
k
^
⇒
8
(
a
×
b
)
=
8
i
^
−
40
j
^
−
24
k
^
Now,
a
×
b
=
∣
∣
i
^
λ
1
j
^
2
−
λ
k
^
−
3
2
∣
∣
=
(
4
−
3
λ
)
i
^
−
(
2
λ
+
3
)
j
^
+
(
−
λ
2
−
2
)
k
^
⇒
λ
=
1
∴
a
=
i
^
+
2
j
^
−
3
k
^
b
=
i
^
−
j
^
+
2
k
^
⇒
a
+
b
=
2
i
^
+
j
^
−
k
^
,
a
−
b
=
3
j
^
−
5
k
^
⇒
(
a
+
b
)
×
(
a
−
b
)
=
∣
∣
i
^
2
0
j
^
1
3
k
^
−
1
−
5
∣
∣
=
2
i
^
+
10
j
^
+
6
k
^
∴
required answer
=
4
+
100
+
36
=
140