Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let λ * be the largest value of λ for which the function f λ( x )=4 λ x 3-36 λ x 2+36 x +48 is increasing for all x ∈ R. Then fλ *(1)+fλ *(-1) is equal to :
Q. Let
λ
∗
be the largest value of
λ
for which the function
f
λ
​
(
x
)
=
4
λ
x
3
−
36
λ
x
2
+
36
x
+
48
is increasing for all
x
∈
R
. Then
f
λ
​
∗
(
1
)
+
f
λ
​
∗
(
−
1
)
is equal to :
1365
163
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
36
B
48
C
64
D
72
Solution:
f
λ
​
(
x
)
=
4
λ
x
3
−
36
λ
x
2
+
36
x
+
48
f
λ
​
′
(
x
)
=
12
λ
x
2
−
72
λ
x
+
36
f
λ
​
′
(
x
)
=
12
(
λ
x
2
−
6
λ
x
+
3
)
≥
0
∴
λ
>
0&
D
≤
0
36
λ
2
−
4
×
λ
×
3
≤
0
9
λ
2
−
3
λ
≤
0
3
λ
(
3
λ
−
1
)
≤
0
λ
∈
[
0
,
3
1
​
]
∴
λ
largestÂ
​
=
3
1
​
f
(
x
)
=
3
4
​
x
3
−
12
x
2
+
36
x
+
48
∴
f
(
1
)
+
f
(
1
)
=
72