Q.
Let λ and α be real. The set of all values of x for which the system of linear equations λx+(sinα)y+(cosα)z=0 x+(cosα)y+(sinα)z=0 −x+(sinα)−(cosα)z=0 has a non-trivial solution, is
Since the system has a non-trivial solution,
therefore ∣∣λ1−1sinαcosαsinαcosαsinα−cosα∣∣=0 ⇒λ(−cos2α−sin2α)−(−sinαcosα−sinαcosα)−(sin2α−cos2α)=0 ⇒−λ+sin2α+cos2α=0⇒λ=sin2α+cos2α ⇒λ=2cos(2α−4π)
Since −1<cos(2α−4π)<1∀∈R ∴−2<λ2i.e.λ∈[−2,2]