Q.
Let $\lambda$ and $\alpha$ be real. The set of all values of x for which the system of linear equations
$\lambda\,x + \left(sin\, \alpha\right) y + \left(cos\, \alpha \right) z = 0$
$x + \left(cos\, \alpha \right) y + \left(sin \,\alpha \right) z = 0$
$- x + \left(sin \,\alpha \right) - \left(cos\, \alpha \right) z = 0$ has a non-trivial solution, is
Determinants
Solution: