Q.
Let L=x→0limx4a−a2−x2−4x2,a>0. If L is finite, then
1962
209
AMUAMU 2014Limits and Derivatives
Report Error
Solution:
Given, L=x→0limx4a−a2−x2−4x2 [form 00t] =x→0lim4x30−2a2−x2(0−2x)−42x =x→0lim4x3x(a2−x21−21) =x→0lim4x2a2−x21−21
For limit to be exist, a=2