Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let L denotes the value of a satisfying the equation log √8(a)=(10/3) and M denotes the value of b satisfying the equation 4 log 9 3+9 log 2 4=10 log b 83. Find the sum of the digits in (L+M)
Q. Let
L
denotes the value of a satisfying the equation
lo
g
8
(
a
)
=
3
10
and
M
denotes the value of
b
satisfying the equation
4
l
o
g
9
3
+
9
l
o
g
2
4
=
1
0
l
o
g
b
83
. Find the sum of the digits in
(
L
+
M
)
51
118
Continuity and Differentiability
Report Error
Answer:
6
Solution:
L
:
lo
g
8
(
a
)
=
3
10
⇒
a
=
(
8
)
3
10
⇒
a
=
(
2
3
)
2
×
3
10
=
2
5
=
32
M
:
4
l
o
g
9
3
+
9
l
o
g
2
4
=
1
0
l
o
g
b
83
⇒
2
+
81
=
1
0
l
o
g
b
83
⇒
83
=
1
0
l
o
g
b
83
∴
83
=
(
83
)
l
o
g
b
10
⇒
lo
g
b
10
=
1
⇒
b
=
10
=
M
Hence,
(
L
+
M
)
=
(
a
+
b
)
=
32
+
10
=
42