Q.
Let [k] denotes the greatest integer less than or equal to k.
If number of positive integral solutions of the equation [[π2]x]=[[1121]x] is n,
707
129
Relations and Functions - Part 2
Report Error
Answer: 4
Solution:
[9x]=[11x]
Case-I : 0≤9x<1 and 0≤11x<1 ⇒0≤x<9 and 0≤x<11⇒ common value of x is {1,2,3,…..8}
Case-II : 1≤9x<2 and 1≤11x<2 ⇒9≤x<18 and 11≤x<22⇒x∈{11,12,…..,17}
Case-III : 2≤9x<3 and 2≤11x<3 ⇒18≤x<27 and 22≤x<33⇒x∈{22,23,……,26}
Case-IV : 3≤9x<4 and 3≤11x<4 ⇒27≤x<36 and 33≤x<44⇒x∈{33,34,35}
Case-V : 4≤9x<5 and 4≤11x<5⇒x=44 ∴ total positive integer x=8+7+5+3+1=24 ∴ Answer =24−8=8 .