Q.
Let k and K be the minimum and the maximum values of the function f(x)=1+x0.6(1+x)0.6 in [0,1] respectively, then the ordered pair (k,K) is equal to :
f(x)=1+x0.6(1+x)0.6,x∈[0,1];(k,k)=?; where k=f(x) min and k=f(x) max. ⇒f(x)=(1+x3/5)(1+x)3/5 ⇒f′(x)=(1+x3/5)2(1+x3/5)⋅53(1−x)−2/5−(1+x)3/5⋅53x−2/5 ⇒f′(x)=53[x2/5(1+x)2/5(1+x3/3)2(1+x3/5)x2/5−(1+x)] ⇒f′(x)=53[x2/5(1+x)2/5(1+x3/3)2x2/5+x−1−x] ⇒f′(x)=0 for x=1,−1∴f(−1)=0,f(1)=2(2)3/5 ⇒f′(x)=0 for x=1,−1 ∴f(−1)=0,f(1)=2(2)3/5
Also f(0)=1⇒In[0,1], f(x) has minimum value =f(1)=(2)−2/5=(2)0.4=k
and maximum value =f(0)=1=k ∴(k,k)=(2−04,1)