Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ∫ ( dx / x 2008+ x )=(1/ p ) ln (( x q /1+ x r ))+ C where p , q , r ∈ N and need not be distinct, then the value of ( p + q + r ) equals
Q. Let
∫
x
2008
+
x
d
x
=
p
1
ln
(
1
+
x
r
x
q
)
+
C
where
p
,
q
,
r
∈
N
and need not be distinct, then the value of
(
p
+
q
+
r
)
equals
407
169
Integrals
Report Error
A
6024
9%
B
6022
3%
C
6021
86%
D
6020
2%
Solution:
I
=
∫
x
(
x
2007
+
1
)
d
x
=
∫
x
(
x
2007
+
1
)
x
2007
+
1
−
x
2007
d
x
=
∫
(
x
1
−
1
+
x
2007
x
2006
)
d
x
=
ln
x
−
2007
1
ln
(
1
+
x
2007
)
=
2007
l
n
x
2007
−
l
n
(
1
+
x
2007
)
=
2007
1
ln
(
1
+
x
2007
x
2007
)
+
C
p
+
q
+
r
=
6021
Alternatively:
I
=
∫
x
2008
[
1
+
x
−
2007
]
d
x
=
∫
1
+
x
−
2007
x
−
2008
d
x
.