Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let I=∫(x2+1)((x+1) ex)2 d x=Af2(x)+C, where C is a constant of integration and f (-1)=((2/ e )), then value of 2 A + f (0) equals
Q. Let
I
=
∫
(
x
2
+
1
)
(
(
x
+
1
)
e
x
)
2
d
x
=
A
f
2
(
x
)
+
C
, where
C
is a constant of integration and
f
(
−
1
)
=
(
e
2
)
, then value of
2
A
+
f
(
0
)
equals
2326
126
Integrals
Report Error
A
3
B
2
C
1
D
0
Solution:
∫
(
x
2
+
1
)
e
x
⋅
(
x
+
1
)
2
e
x
d
x
Let
(
x
2
+
1
)
e
x
=
t
⇒
(
x
+
1
)
2
e
x
d
x
=
d
t
⇒
∫
t
d
t
=
2
t
2
+
c
⇒
I
=
2
(
(
x
2
+
1
)
e
x
)
2
+
c
⇒
f
(
x
)
=
(
x
2
+
1
)
e
x
and
A
=
2
1
⇒
f
(
0
)
=
1
⇒
2
A
+
f
(
0
)
=
2