Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let I 1=∫ limits0 x e tx ⋅ e - t 2 dt and I 2=∫ limits0 x e - t 2 / 4 dt where x >0 then the value of ( I 1/ I 2) is
Q. Let
I
1
=
0
∫
x
e
t
x
⋅
e
−
t
2
d
t
and
I
2
=
0
∫
x
e
−
t
2
/4
d
t
where
x
>
0
then the value of
I
2
I
1
is
726
86
Integrals
Report Error
A
e
−
x
2
/2
B
e
x
2
/4
C
e
−
x
2
/4
D
e
x
2
/2
Solution:
I
1
=
0
∫
x
e
t
(
x
−
t
)
d
t
t
(
x
−
t
)
=
−
[
t
2
−
t
x
]
=
−
[
(
t
−
2
x
)
2
−
4
x
2
]
=
4
x
2
−
(
t
−
2
x
)
2
I
1
=
0
∫
x
e
4
x
2
(
t
−
2
x
)
2
d
t
=
e
4
x
2
0
∫
x
e
−
4
(
2
t
−
x
)
2
d
t
;
2
t
−
x
=
y
⇒
d
t
=
2
d
y
=
2
e
x
2
/4
−
x
∫
x
e
−
4
y
2
d
y
I
1
=
e
4
x
2
0
∫
x
e
−
4
t
2
d
t
=
e
4
x
2
⋅
I
2
⇒
I
2
I
1
=
e
4
x
2