Q.
Let H:a2x2−b2y2=1, a >0,b>0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 4(22+14). If the eccentricity H is 211, then value of a2+b2 is equal to _______
a2x2−b2y2=1
Given e2=1+a2b2⇒411=1+a2b2⇒b2=47a2 ∴(a)2x2−(27a)2y2=1 Now given 2a+2⋅27a=4(22+14) a(2+7)=42(2+7) a=42⇒a2=32 b2=47×16×2=56