Q.
Let H1,…,Hn be mutually exclusive and exhaustive
events with P(Hi)>0,i=1,2,…,n. Let E be any
other event with 0<P(E)<1. STATEMENT-1 : P(Hi∣E)>P(E∣Hi)⋅P(Hi) for i=1, 2,…,n
because STATEMENT-2 : i=1∑nP(Hi)=1.
Statement-1: If P(HinE)=0 for some i, then P(EHi)=P(HiE)=0
If P(HinE)=0 for all i=1,2,3,…,n, then P(EHi)=P(Hi)P(HinE)×P(E)P(Hi) =P(E)P(HiE)×P(Hi) >P(HiE)×P(Hi)
Hence, Statement-1 may not always be true.
Statement-2: Clearly, we can write as K1∪H2∪H3∪…∪Hn=S ⇒P(H1)+P(H2)+…+P(Hn)=1
Hence, Statement-2 is true.