Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let g(x)=((x-1)n/ log cos m(x-1)) ; 0 < x < 2, m and n are integers, m ≠ 0, n > 0, and let p be the left hand derivative of |x-1| at x=1. If displaystyle lim s arrow 1+ g(x)=p, then
Q. Let
g
(
x
)
=
l
o
g
c
o
s
m
(
x
−
1
)
(
x
−
1
)
n
;
0
<
x
<
2
,
m
and
n
are integers,
m
=
0
,
n
>
0
, and let
p
be the left hand derivative of
∣
x
−
1∣
at
x
=
1
. If
s
→
1
+
lim
g
(
x
)
=
p
, then
3304
195
JEE Advanced
JEE Advanced 2008
Report Error
A
n
=
1
,
m
=
1
B
n
=
1
,
m
=
−
1
C
n
=
2
,
m
=
2
D
n
>
2
,
m
=
n
Solution:
From graph,
p
=
−
1
⇒
s
→
1
+
lim
g
(
x
)
=
−
1
⇒
h
→
0
lim
g
(
1
+
h
)
=
−
1
⇒
h
→
0
lim
(
lo
g
cos
m
h
h
n
)
=
−
1
⇒
h
→
0
lim
m
⋅
(
−
tanh
)
n
⋅
h
n
−
1
=
−
(
m
n
)
h
→
0
lim
(
tanh
h
n
−
1
)
=
−
1
,
which holds if
n
=
m
=
2.