Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let g(t)=∫ limits-π / 2π / 2 cos ((π/4) t+f(x)) d x, where f(x)= log e(x+√x2+1), x ∈ R. Then which one of the following is correct?
Q. Let
g
(
t
)
=
−
π
/2
∫
π
/2
cos
(
4
π
t
+
f
(
x
)
)
d
x
,
where
f
(
x
)
=
lo
g
e
(
x
+
x
2
+
1
)
,
x
∈
R
. Then which one of the following is correct?
491
184
JEE Main
JEE Main 2021
Integrals
Report Error
A
g
(
1
)
=
g
(
0
)
B
2
g
(
1
)
=
g
(
0
)
C
g
(
1
)
=
2
g
(
0
)
D
g
(
1
)
+
g
(
0
)
=
0
Solution:
g
(
t
)
=
−
π
/2
∫
π
/2
(
cos
4
π
t
+
f
(
x
)
)
d
x
g
(
t
)
=
π
cos
4
π
t
+
−
π
/2
∫
π
/2
f
(
x
)
d
x
g
(
t
)
=
π
cos
4
π
t
g
(
1
)
=
2
π
,
g
(
0
)
=
p
i