Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $g(t)=\int\limits_{-\pi / 2}^{\pi / 2} \cos \left(\frac{\pi}{4} t+f(x)\right) d x$,
where $f(x)=\log _{e}\left(x+\sqrt{x^{2}+1}\right), x \in R$. Then which one of the following is correct?

JEE MainJEE Main 2021Integrals

Solution:

$g(t)=\int\limits_{-\pi / 2}^{\pi / 2}\left(\cos \frac{\pi}{4} t+f(x)\right) d x$ $g(t)=\pi \cos \frac{\pi}{4} t+\int\limits_{-\pi / 2}^{\pi / 2} f(x) d x$ $g(t)=\pi \cos \frac{\pi}{4} t$ $g(1)=\frac{\pi}{\sqrt{2}}, g(0)= pi$