Q.
Let g : R→R be given by g(x)=3+4x. If gn(x)=gogo....og(x) and gn(x)=A+Bx, then A and B are
1924
192
Relations and Functions - Part 2
Report Error
Solution:
Since g(x)=3+4x ∴g2(x)=(gog)(x)=g{g(x)} =g(3+4x)=3+4(3+4x)
or g2(x)=15+42x=(42−1)+42x
Now g3(x)=(gogog)x=g{g2(x)} =g(15+42x)=3+4(15+42x) =63+43x=(43−1)+43x
Similarly, we get gn(x)=(4n−1)+4nx