Q.
Let g is the inverse function of fand f′(x)=(1+x2)x10. If g(2)=a then g′(2) is equal to
368
121
Continuity and Differentiability
Report Error
Solution:
f[g(x)]=x⇒f′[g(x)]⋅[g′(x)]=1⇒f′[g(2)]g′(2)=12⇒f′(a)g′(2)[ putting x=2] given, f′(a)=1+a2a10⇒g′(2)=a101+a2 Altemative: g[f(x)]=x g′[f(x)]⋅f′(x)=1 now g(2)=a⇒f(a)=2 ∴g and f are inverse of each other now f(x)=2⇒g(2)=x=a ∴g′(2)⋅f′(a)=1 g′(2)=f′(a)1=a101+a2