Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let G1 and G2 be the geometric means of two series x 1, x 2, ldots ldots, x n and y 1, y 2 ldots . y n respectively. If G is the geometric mean of series x i / y i , i =1,2, ldots, n, then G is equal to-
Q. Let
G
1
and
G
2
be the geometric means of two series
x
1
,
x
2
,
……
,
x
n
and
y
1
,
y
2
…
.
y
n
respectively. If
G
is the geometric mean of series
x
i
/
y
i
,
i
=
1
,
2
,
…
,
n
, then
G
is equal to-
214
150
Statistics
Report Error
A
G
1
−
G
2
B
lo
g
G
1
/
lo
g
G
2
C
lo
g
(
G
1
/
G
2
)
D
G
1
/
G
2
Solution:
∵
G
1
=
(
x
1
x
2
…
x
n
)
1/
n
and
G
2
=
(
y
1
y
2
…
y
n
)
1/
n
∴
G
=
(
y
1
x
1
×
y
2
x
2
×
…
..
×
y
n
x
n
)
1/
n
=
(
y
1
×
y
2
×
……
×
y
n
)
1/
n
(
x
1
×
x
2
×
……
×
x
n
)
1/
n
=
G
2
G
1