x2dxdy=y2ex1⇒y2dy=x2ex1dx integrating both sides, y−1=∫x2ex1dx+C⇒ putting x1=t⇒x2−1dx=dt y−1=−∫etdt+C⇒y−1=e−t+C⇒y−1=−ex1+C ∵x→0−Limf(x)=1⇒−1=0+C⇒C=−1 y−1=−ex1−1⇒y=1+ex11⇒dxdy=(1+ex1)21ex1(x2−1)=x2(1+ex1)2ex1 ∴dxdy>0∀x∈R−{0} x→±∞Lim1+ex11=21 and x→0+Lim1+ex11=0 ∴ Graph of the function is
From the graph options (A), (B) and (D) are correct.