Q.
Let for a=a1=0, f(x)=ax2+bx+c,g9x)=a1x2+b1x+c1 and p(x)=f(x)−g(x).
If p(x)=0 only for x=−1 and p(−2)=2, then the value of p(2) is :
4052
207
AIEEEAIEEE 2011Complex Numbers and Quadratic Equations
Report Error
Solution:
P(x)=0 ⇒f(x)=g(x) ⇒ax2+bx+c=a1x2+b1x+C, ⇒(a−a1)x2+(b−b1)x+(c−c1)=0.
It has only one solution x=−1 ⇒b−b1=a−a1+c−c1....(1)
vertex (−1,0)⇒2(a−a1)b−b1=−1⇒b−b1=2(a−a1)....(2) ⇒f(−2)−g(−2)=2 ⇒4a−2b+c−4a1+2b1−c1=2 ⇒4(a−a1)−2(b−b1)+(c−c1)=2....(3)
by (1),(2) and (3)(a−a1)=(c−c1)=21(b−b1)=2
Now P(2)=f(2)−g(2) =4(a−a1)+2(b−b1)+(c−c1) =8+8+2=18