Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincasesx sin ((1/x))+ sin ((1/x2)), x ≠ 0 0, x=0 endcases then displaystyle lim x arrow ∞ f(x) equals
Q. Let
f
(
x
)
=
{
x
sin
(
x
1
)
+
sin
(
x
2
1
)
,
0
,
x
=
0
x
=
0
then
x
→
∞
lim
f
(
x
)
equals
119
175
Limits and Derivatives
Report Error
A
0
24%
B
-1 / 2
15%
C
1
50%
D
None of these
6%
Solution:
x
→
∞
lim
f
(
x
)
=
x
→
∞
lim
x
sin
(
x
1
)
+
sin
(
x
2
1
)
=
x
→
∞
lim
(
x
1
)
sin
(
x
1
)
+
x
→
∞
lim
sin
(
x
2
1
)
=
1
+
0
=
1