Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=x(ex2-e-x2)-2 x-∫(ex2-e-x2) d x. If f(x) is decreasing in (x1, x2) then (x1+x2) equals
Q. Let
f
(
x
)
=
x
(
e
x
2
−
e
−
x
2
)
−
2
x
−
∫
(
e
x
2
−
e
−
x
2
)
d
x
. If
f
(
x
)
is decreasing in
(
x
1
,
x
2
)
then
(
x
1
+
x
2
)
equals
282
131
Application of Derivatives
Report Error
A
0
B
2
e
C
e
e
2
−
1
D
2
3
e
Solution:
f
(
x
)
=
x
(
e
x
2
−
e
−
x
2
)
−
2
x
−
∫
(
e
x
2
−
e
−
x
2
)
d
x
f
′
(
x
)
=
2
x
2
(
e
x
2
+
e
−
x
2
)
+
(
e
x
2
−
e
−
x
2
)
−
2
−
e
x
2
+
e
−
x
2
f
′
(
x
)
=
2
x
2
(
e
x
2
−
e
−
x
2
)
−
2
<
0
∴
e
x
2
+
e
−
x
2
<
x
2
1
e
t
+
e
−
t
<
t
1
;
t
>
0
decreasing in (-a, a)
∴
x
1
+
x
2
=
0