f(x)=x+0∫π/2(sinxcosy+cosxsiny)f(y)dy f(x)=x+0∫π/2((cosyf(y)dy)sinx+(sinyf(y)dy)cosx).......(1)
On comparing with f(x)=x+π2−4asinx+π2−4bcosx,x∈R then ⇒π2−4a=0∫π/2cosyf(y)dy.....(2) ⇒π2−4b=0∫π/2sinyf(y)dy.....(3)
Add (2) and (3) π2−4a+b=0∫π/2(siny+cosy)f(y)dy…(4) π2−4a+b=0∫π/2(siny+cosy)f(2π−y)dy…(5)
Add (4) and (5) π2−42(a+b)=0∫π/2(siny+cosy)(2π+π2−4(a+b)(siny+cosy))dy =π+π2−4a+b(2π+1) (a+b)=−2π(π+2)