Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x)=(x5-1)(x3+1), g(x)=(x2-x+1) and let h(x) be such that f (x)=g(x)h(x). Then displaystyle limx → 1 h(x) is
Q. Let
f
(
x
)
=
(
x
5
−
1
)
(
x
3
+
1
)
,
g
(
x
)
=
(
x
2
−
x
+
1
)
and let
h
(
x
)
be such that
f
(
x
)
=
g
(
x
)
h
(
x
)
.
Then
x
→
1
lim
h
(
x
)
is
1557
200
KEAM
KEAM 2014
Limits and Derivatives
Report Error
A
0
B
1
C
3
D
4
E
5
Solution:
Given,
f
(
x
)
=
(
x
5
−
1
)
(
x
3
+
1
)
and
g
(
x
)
=
(
x
2
−
1
)
(
x
2
−
x
+
1
)
∵
f
(
x
)
=
g
(
x
)
h
(
x
)
∴
h
(
x
)
=
g
(
x
)
f
(
x
)
x
→
1
lim
h
(
x
)
=
x
→
1
lim
(
x
2
−
1
)
(
x
2
−
x
+
1
)
(
x
5
−
1
)
(
x
3
+
1
)
=
x
→
1
lim
(
x
−
1
)
(
x
+
1
)
(
x
2
−
x
+
1
)
(
x
5
−
1
)
(
x
+
1
)
(
x
2
−
x
+
1
)
=
x
→
1
lim
(
x
−
1
)
(
x
5
−
1
)
(
form
0
0
)
=
x
→
1
lim
1
5
x
4
(L' Hospital's rule)
=
1
5
(
1
)
4
=
5