Q.
Let f(x)=x3+x, then the equation
y−f(2)2+y−f(3)3+y−f(4)4=0, has
Solution:
We have, f(x)=x3+x
f(2)=10,
f(3)=30,
f(4)=68
Given, y−f(2)2+y−f(3)3+y−f(4)4=0
⇒y−102+y−303+y−684=0
⇒2(y−30)(y−68)+3(y−10)
(y−68)+4(y−10)(y−30)=0
⇒9y2−590y+7320=0
y=2×9590±(590)2−4×9×7320
y=18590±84580
=18590±290.82
y=16.62 or 48.93
Clearly, exactly one root lie between (f(3),f(4))