Q.
Let f(x)={(x−2)2x3+x2−16x+20,k,x=2 x=2
If f(x) is continuous for all x, then k=
1748
224
Continuity and Differentiability
Report Error
Solution:
k=f(2)=x→2limf(x) =x→2lim(x−2)2x3+x2−16x+20
Using L′ Hospital Rule, we get x→2lim2(x−2)3x2+2x−16(00 form)
Again using L′ Hospital Rule, we get x→2lim26x+2=7.
So, k=7