Q.
Let $f(x) =
\begin{cases}
\frac{ x^{3}+x^{2}-16x+20}{\left(x-2\right)^{2}}, & \text{ $x \ne 2$ } \\
k ,& \text{ $x=2$ }
\end{cases}$
If $f(x)$ is continuous for all $x$, then $k =$
Continuity and Differentiability
Solution: