Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincases x3-x2+10 x-7, x ≤ 1 -2 x+ log 2(b2-4), x>1 endcases Then the set of all values of b, for which f(x) has maximum value at x=1, is :
Q. Let
f
(
x
)
=
{
x
3
−
x
2
+
10
x
−
7
,
−
2
x
+
lo
g
2
(
b
2
−
4
)
,
x
≤
1
x
>
1
Then the set of all values of
b
, for which
f
(
x
)
has maximum value at
x
=
1
, is :
334
115
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
(
−
6
,
−
2
)
B
(
2
,
6
)
C
[
−
6
,
−
2
)
∪
(
2
,
6
]
D
[
−
6
,
−
2
)
∪
(
2
,
6
]
Solution:
f
(
1
)
=
3
For
x
<
1
,
f
′
(
x
)
=
3
x
2
−
2
x
+
10
>
0
⇒
f
(
x
)
is increasing
For
x
>
1
,
f
′
(
x
)
<
0
⇒
function is decreasing.
x
→
1
+
lim
f
(
x
)
=
−
2
+
lo
g
2
(
b
2
−
4
)
For maximum value at
x
=
1
3
≥
−
2
+
lo
g
2
(
b
2
−
4
)
32
≥
b
2
−
4
>
0
b
∈
[
−
6
,
−
2
)
∪
(
2
,
6
]