Q.
Let f(x)=x3+x+1, suppose p(x) be another cubic polynomial such that p(0)=−1 & zero’s of p(x) are the square of the roots of f(x)=0, then value of p(9) equals
2221
219
Complex Numbers and Quadratic Equations
Report Error
Solution:
f(x)=x3+x+1=(x−α)(x−β)(x−γ)…(A)
where α,β,γ are roots of f(x)=0 ∴αβγ=−1
Now, roots of p(x)=0, are square of the roots of f(x)=0 i.e., roots of p(x)=0 are α2,β2,γ2 ∴p(x)=λ(x−α2)(x−β2)(x−γ2)…(∗) ∴p(0)=λ(−α2β2γ2) ⇒1=λ (as αβγ=−1 & p(0)=−1)
Now p(x)=(x−α2)(x−β2)(x−γ2) (using (*)) ∴p(x2)=(x2−α2)(x2−β2)(x2−γ2) =(x−α)(x−β)(x−γ)(x+α)(x+β)(x+γ) =−f(x)f(−x) (using (A)) p(x2)=(x3+x+1)(x3+x−1) ∴p(32)=(27+3+1)(27+3−1) (putting x = 3) =(30+1)(30−1) ∴p(9)=899