Q.
Let f(x)=x3+ax2+bx+c, where a,b,c are real numbers If f(x) has a local minimum at x=1 and a local maximum at x=−31 and f(2)=0, then −1∫1f(x)dx equals
We have, f(x)=x3+ax2+bx+c f(2)=8+4a+2b+c=0…(i) [∵f(2)=0] f′(x)=3x2+2ax+b f′(1)=3+2a+b=0…(ii) [∵f′(1)=0] f′(3−1)=31−32a+b=0…(iii) [∵f′(3−1)=0]
From Eqs. (ii) and (iii), we get a=−1,b=−1
Putting the values of a and b in Eq. (i), we get c=−2 ∴f(x)=x3−x2−x−2 −1∫1f(x)dx=−1∫1(x3−x2−x−2)dx =−20∫1(x2+2)dx [∵x3 and -x are odd functions =−2[3x3+2x]01 =−2[31+2]=−314