We have f(x)=x3+ax2+bx+5sin2x ⇒f′(x)3x2+2ax+b+5sin2x ∵f(x) is an increasing function ∴f′(x)>0⇒3x2+2ax+b+5sin2x>0, (∵sin2x<1) ∴0<3x2+2ax+b+5sin2x<3x2+2ax+b+5 ⇒3x2+2ax+b+5>0 ⇒4a2+4.3(b+5)<0⇒a2+3b−15<0
[∵ax2+bx+c>0 or all real x if . a>0 and discriminant <0]