Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = (x2-x/x2+2x)x ≠ 0, -2. Then (d/dx)[f-1(x)] (wherever it is defined) is equal to :
Q. Let
f
(
x
)
=
x
2
+
2
x
x
2
−
x
x
=
0
,
−
2.
Then
d
x
d
[
f
−
1
(
x
)
]
(wherever it is defined) is equal to :
4684
167
JEE Main
JEE Main 2013
Continuity and Differentiability
Report Error
A
(
1
−
x
)
2
−
1
5%
B
(
1
−
x
)
2
3
63%
C
(
1
−
x
)
2
1
11%
D
(
1
−
x
)
2
−
3
21%
Solution:
Let
y
=
x
2
+
2
x
x
2
−
x
⇒
(
x
2
+
2
x
)
y
=
x
2
−
x
⇒
x
(
x
+
2
)
y
=
x
(
x
−
1
)
⇒
x
[
(
x
+
2
)
y
−
(
x
−
1
)
]
=
0
∵
x
=
0
,
∴
(
x
+
2
)
y
−
(
x
−
1
)
=
0
⇒
x
y
+
2
y
−
x
+
1
=
0
⇒
x
(
y
−
1
)
=
−
(
2
y
+
1
)
∴
x
=
1
−
y
2
y
+
1
⇒
f
−
1
(
x
)
=
1
−
x
2
x
+
1
d
x
d
(
f
−
1
(
x
)
)
=
(
1
−
x
)
2
2
(
1
−
x
)
−
(
2
x
−+
1
)
(
−
1
)
=
(
1
−
x
)
2
2
−
2
x
+
2
x
+
1
=
(
1
−
x
)
2
3