Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincases-x2 , x<0 x2+8, x ≥ 0 endcases Equation of tangent line touching both branches of y=f(x) is
Q. Let
f
(
x
)
=
{
−
x
2
x
2
+
8
,
,
x
<
0
x
≥
0
Equation of tangent line touching both branches of
y
=
f
(
x
)
is
548
160
Application of Derivatives
Report Error
A
y
=
4
x
+
1
B
y
=
4
x
+
4
C
y
=
x
+
4
D
y
=
x
+
1
Solution:
Let
y
=
m
x
+
c
be tangent touching both branches.
f
(
x
)
=
−
x
2
,
y
=
m
x
+
c
x
<
0
x
2
+
m
x
+
c
=
0
,
m
>
0
(
∵
x
<
0
)
(negative roots)
D
=
0
⇒
m
2
=
4
c
f
(
x
)
=
x
2
+
8
,
y
=
m
x
+
c
,
x
>
0
x
2
−
m
x
+
8
−
c
=
0
,
m
>
0
(positive roots)
D
=
0
⇒
m
2
=
32
−
4
c
⇒
c
=
4
,
m
2
=
16
⇒
c
=
4
,
m
=
4