Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=x2 log x, x>0. Then the minimum value of f is
Q. Let
f
(
x
)
=
x
2
lo
g
x
,
x
>
0
. Then the minimum value of
f
is
190
143
KEAM
KEAM 2021
Report Error
A
e
1
B
2
e
C
−
2
e
D
e
E
2
e
−
1
Solution:
f
(
x
)
=
x
2
lo
g
x
,
x
>
0
f
′
(
x
)
=
x
2
×
x
1
+
lo
g
x
×
2
x
=
x
(
1
+
2
lo
g
x
)
=
x
(
1
+
lo
g
x
2
)
f
′
(
x
)
=
0
As
x
=
0
,
1
+
lo
g
x
2
=
0
lo
g
x
2
=
−
1
x
2
=
e
−
1
x
=
e
1
f
′′
(
x
)
=
1
+
x
2
f
′′
(
6
1
)
=
1
+
2
e
>
0
Hence,
f
(
x
)
is minimum at
x
=
6
1
f
(
e
1
)
=
e
1
lo
g
e
−
1/2
=
2
e
−
1