Q.
Let f(x)=(x+2)eln(x+2) and g(x)=xe(−logxe1)−e−ln22x. If h(x)=f(x)+g(x), then the smallest positive integer in the range of h(x) is
256
117
Relations and Functions - Part 2
Report Error
Solution:
Clearly, domain of h(x)=x∈R+−{1}.
We have, h(x)=f(x)+g(x)=(x+2)eln(x+2)+xe(−logxc1)−e−ln22x =(x+2)2+x21−2x⋅eln2=x2+4x+4+x21−4x=x2+421+4 ⇒h(x)>6∀x∈R+−{1}
[Domain of h(x) is x∈R+−{1} ] ⇒h(x)>6∀x∈R+−{1}
So, smallest integral value in the range of h(x) is 7 . Ans.]