Q.
Let f(x)=x2 and g(x)=sinx for all x∈R. Then the set of all x satisfying (fogogof)(x)=(gogof)(x) where (fog)(x)=f(g(x)), is
Solution:
( fogogof )(x)=sin2(sinx2)
( gogof )(x)=sin(sinx2)
∴sin2(sinx2)=sin(sinx2)
⇒sin(sinx2)[sin(sinx2)−1]=0
⇒sin(sinx2)=0 or 1
⇒sinx2=nπ or 2mπ+π/2, where m,n∈I
⇒sinx2=0
⇒x2=nπ⇒x=±nπ,n∈{0,1,2,…}