Q.
Let f(x)=x2+ax+b. If ∀x∈R, there exist a real value of y such that f(y)=f(x)+y, then find the maximum value of 100a.
1780
77
Complex Numbers and Quadratic Equations
Report Error
Answer: 50
Solution:
Given, f(y)=f(x)+y ⇒y2+ay+b=x2+ax+b+y⇒y2+y(a−1)−x2−ax=0
As, y∈R, so D≥0∀x∈R ⇒(a−1)2+4(x2+ax)≥0∀x∈R ⇒4x2+4ax+a2−2a+1≥0∀x∈R
Now, D≤0 ⇒16a2−16(a2−2a+1)≤0⇒2a−1≤0⇒a≤21
So, amax.=21
Hence, maximum value of 100a=50