Q.
Let f(x)=x2+ax+bcosx, a being an integer and b is a real number. Find the number of ordered pairs (a,b) for which the equations f(x)=0 and f(f(x))=0 have the same (nonempty) set of real roots
1933
175
Relations and Functions - Part 2
Report Error
Solution:
Let α be a root of f(x)=0 ∴f(α)=0 and f(f(α))=0 ⇒f(0)=0 ⇒b=0 ∴f(x)=x(x+a)=0 ⇒x=0 or x=−a f(f(x))=x(x+a)(x2+ax+a)=0 ∴x2+ax+a=0
should have no real roots besides 0 and −aD=a2−4a<0 ⇒0<a<4
If the roots of x2+ax+a=0 is either x=0
or x=−a then a=0 ∴α∈[0,4) ⇒a=0,1,2,3
Number of ordered pairs =4.