Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=x2+4 x-1 and g(x)=|x|. If h(x)=f(g(x))+10, then the range of h(x), is
Q. Let
f
(
x
)
=
x
2
+
4
x
−
1
and
g
(
x
)
=
∣
x
∣
. If
h
(
x
)
=
f
(
g
(
x
))
+
10
, then the range of
h
(
x
)
, is
273
116
Relations and Functions - Part 2
Report Error
A
{
y
:
y
≥
10
}
B
{
y
:
y
≥
0
}
C
{
y
:
y
≥
5
}
D
{
y
:
y
≥
9
}
Solution:
h
(
x
)
=
f
(
g
(
x
))
+
10
=
∣
x
∣
2
+
4∣
x
∣
−
1
+
10
=
∣
x
∣
2
+
4∣
x
∣
+
9
=
(
∣
x
∣
+
2
)
2
+
5
Hence range of
h
(
x
)
is
[
9
,
∞
)
Minimum value occurs when
x
=
0