Q.
Let f(x)=4x2(2lnx−1)−ex+k,k∈R. If least value of k for which f(x) is defined for
all
x∈(0,∞) is bae2, where a,b∈N, then find least value of (a+b).
f(x)=4x2(2lnx−1)−cx+k f′(x)=4x2(x2)+(2lnx−1)⋅2x−e =2x+xlnx−2x−e =xlnx−e f′(x)=0⇒xlnx−e=0⇒lnx−xe=0 f′(x)<0 in (0,e)⇒f(x) is ↓ f′(x)>0 in (e,∞)⇒f(x) is ↑ f(x)∣min.=f(e)=4e2−e2+k=k−43e2
For f(x) to be defined for all x∈(0,∞) f(x)≥0⇒k≥43e2 k∣min. =43e2=bae2 ∴a+b=3+4=7