Q. Let $f(x)=\frac{x^2}{4}(2 \ln x-1)-e x+k, k \in R$. If least value of $k$ for which $\sqrt{f(x)}$ is defined for all $x \in(0, \infty)$ is $\frac{ a }{ b } e ^2$, where $a , b \in N$, then find least value of $( a + b )$.
Application of Derivatives
Solution: